Correction: Structure–property relationships of diketopyrrolopyrrole- and thienoacene-based A–D–A type hole transport materials for efficient perovskite solar cells

نویسندگان

چکیده

Correction for ‘Structure–property relationships of diketopyrrolopyrrole- and thienoacene-based A–D–A type hole transport materials efficient perovskite solar cells’ by Gururaj P. Kini et al. , New J. Chem. 2022, DOI: https://doi.org/10.1039/d2nj00294a.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hole-Transport Materials for Perovskite Solar Cells.

The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this lev...

متن کامل

Hole-transport materials with greatly-differing redox potentials give efficient TiO2-[CH3NH3][PbX3] perovskite solar cells.

Two diacetylide-triphenylamine hole-transport materials (HTM) with varying redox potential have been applied in planar junction TiO2-[CH3NH3]PbI3-xClx solar cells leading to high power-conversion efficiencies up to 8.8%. More positive oxidation potential of the HTM gives higher VOC and lower JSC illustrating the role of matching energy levels, however both HTMs gave efficient cells despite a di...

متن کامل

Novel spiro-based hole transporting materials for efficient perovskite solar cells.

Three spiro-acridine-fluorene based hole transporting materials (HTMs), namely CW3, CW4 and CW5, are employed in the fabrication of organic-inorganic hybrid perovskite solar cells. The corresponding mesoscopic TiO2/CH3NH3PbI3/HTM devices are investigated and compared with that made with commercial spiro-OMeTAD. The best conversion efficiency of 16.56% is achieved for CW4 in the presence of tBp ...

متن کامل

Hole-Transporting Materials for Printable Perovskite Solar Cells

Perovskite solar cells (PSCs) represent undoubtedly the most significant breakthrough in photovoltaic technology since the 1970s, with an increase in their power conversion efficiency from less than 5% to over 22% in just a few years. Hole-transporting materials (HTMs) are an essential building block of PSC architectures. Currently, 2,2',7,7'-tetrakis-(N,N'-di-p-methoxyphenylamine)-9,9'-spirobi...

متن کامل

Stable and efficient hole transporting materials with a dimethylfluorenylamino moiety for perovskite solar cells.

Novel star-shaped hole transporting materials (HTMs) with a bis-dimethylfluorenylamino moiety have been synthesized and evaluated for high performance perovskite solar cell applications. Maximum power conversion efficiency of 14.21% has been achieved by using the HTM with a fused TPA core and the long-term stability was also shown to be comparable with that of .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: New Journal of Chemistry

سال: 2022

ISSN: ['1369-9261', '1144-0546']

DOI: https://doi.org/10.1039/d2nj90068h